Enrollment No:-____

Exam Seat No:-____

C.U.SHAH UNIVERSITY

Summer-2015

Subject Code: 4SC02PHC1 S Course Name: B.Sc. (Pure) Semester: II

Subject Name: Physics-II

Date: 20/5/2015 Marks: 70 Time: 10:30 TO 01:30

Instructions:

- 1) Attempt all Questions in same answer book/Supplementary.
- 2) Use of Programmable calculator & any other electronic instrument prohibited.
- 3) Instructions written on main answer book are strictly to be obeyed.
- 4) Draw neat diagrams & figures (if necessary) at right places.
- 5) Assume suitable & perfect data if needed.

Q-1 Answer the each of the following questions in brief

a)	The dark current of a photodiode is 40 mA. Determine the dark	(02)
	resistance. Assume a reverse bias voltage of 15 V.	
b)	Define: Atomic number (Z) & Atomic mass (A) giving specific example	(02)
c)	Calculate I_E in a transistor for which $\beta = 50$ and $I_B = 20$ mA.	(02)
d)	Explain how and why does s capacitor block a DC signals?	(02)
e)	Define Depletion Region.	(02)

- f) Define: Isotopes and Isotones giving specific examples. (02)
- g) Differentiate: Crystalline Solids versus Non-Crystalline Solids (02)

Attempt any four from Q-2 to Q-8.

Q-2	a)	Discuss the "Radioactive Disintegration Laws" and derive their formulas	(06)
	b)	Compare the properties of \propto -particles, β -particles & γ – rays in tabulated form	(06)
	c)	The Half Life Time of Radon is 3.8 days. Obtain its Decay Constant and Average Life Span.	(02)
Q-3	d)	Write about applications of X-rays.	(05)
	e)	Mention the properties of X-rays	(05)
	f)	An X-ray tube, operated at 30kV, emits continues X-ray spectrum with a short wavelength limit of 0.414 A°. Calculate Plank's constant h. Electron charge = $1.602 \times 10^{-19} coulomb$; Light velocity = $3 \times 10^8 m/s$	(04)

Q-4 a) Define diffraction? Write conditions for diffraction pattern. (04)

Page **1** of **2**

20-5	\sum
	ig)

b)	Explain difference between	Fresnel and Fraunhoff	er diffraction. ((04)
----	----------------------------	-----------------------	-------------------	------

c) State Fermat's principle. Deduce law of reflection and refraction using it. (06)

Q-5	a)	Tabulate the Seven Crystal Systems comprise of Fourteen Bravais Lattices giving their Lattice Parameters, crystal structure diagrams and specific examples of each.	(05)
	b)	Explain: "Lattice + Basis = Crystal Structure".	(05)
	c)	Describe Melde's Experiment.	(04)
Q-6	a)	Explain Construction and working of a half wave rectifier. Deduce mathematical expression for I_{dc} and I_{rms} .	(05)
	b)	Explain C and C-L-C (p) filter circuits in detail.	(05)
	c)	In a double diode full wave rectifier, the internal resistance of each diode is 20 Ω . The transformer R.M.S secondary voltage from centre tap to each end of secondary is 50 V and load resistance is 980 Ω . Find (i) The mean load current. (ii) The R.M.S value of load current.	(02)
	d)	The four diodes used in a bridge rectifier circuit have a forward resistance of 1 Ω and reverse resistance is infinite. The a.c. supply voltage is 240 V (r. m. s) and load resistance is 480 Ω . Calculate the (i) Mean load current. (ii) Power dissipated in each diode.	(02)
Q-7	a)	Explain Principle, Construction and Working of a Light Emitting Diode; mention its advantages and drawbacks.	(06)
	b)	Explain Working and Characteristics Photo-Diode. Write about any one application of Photo-Diode.	(06)
	c)	The photodiode is exposed to light with an illumination of $1.5 \text{ mW/}cm^2$; if the sensitivity of photodiode for the given condition is 57.6 mA/(mW/ cm^2). Find the reverse current through the device.	(02)
Q-8	a)	What is a transistor? What is transistor action and its importance? Explain working of an NPN transistor.	(07)
	b)	Describe in detail Common Emitter (NPN) Transistor configuration with circuit diagram. Explain its input and output characteristics curves.	(07)

